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Abstract

The Mackey Lie algebra glM consists of infinite matrices, each column and row of
which are finite. The category T3

glM
is an abelian tensor category of representations

over the Lie algebra glM , closed under taking submodules, and it is the minimal such
category containing the natural glM -module V and its algebraic dual V ∗. The main
object of our study are the socle filtrations of injective hulls of simple modules in
T3
glM

.These filtrations are known to be finite and exhaustive. Moreover, the simple

modules of T3
glM

are parametrized by three partitions λ, µ, ν, which suggests a combi-

natorial approach. [CP18] gives a combinatorial formula for the multiplicities of simple
constituents of the above injective hulls. Based on this formula we prove two results.
Let ·′ indicate partition conjugation. Our first result states that the socle filtration of
the injective object Iλ,µ,ν coincides with the socle filtration of the object Iλ′,µ′,ν′ up to
partition conjugation. Our second result claims that the length of the socle filtration
of Iλ,µ,ν equals |µ|+ 1 where | · | stands for the degree of a partition.

1



Contents

1 Prerequisites 3

2 Background 7

3 Properties of Littlewood-Richardson coefficients 9

4 Symmetry of socle filtration with respect to partition conjugation 11

5 Length of socle filtration 12

6 Appendix 13

7 References 19

2



1 Prerequisites

In this section we recall the definitions of some important concepts that are used through-
out the paper.

The definitions of a Lie algebra and a module over Lie algebra are standard and one
can find them for example in the classical book [Hum].

Definition 1 (Tensor or monoidal category according to [Wik18]). A monoidal category
is a category C equipped with a monoidal structure which consists of:

• a bifunctor ⊗ : C ×C → C called tensor product,

• an object I, called the identity object or the unit object,

• three natural transformations which correspond to certain coherence conditions:

– associativity of tensor product: for objects A,B,C there is a natural isomor-
phism αA,B,C : (A⊗B)⊗ C ∼= A⊗ (B ⊗ C) called associator.

– I is the left and right identity of the tensor product: there are two natural
isomorphisms λ and ρ called left and right unitor. The components of λ and ρ
are λA : I ⊗A ∼= A and ρA : A⊗ I ∼= A.

In addition it is assumed that:

• the following pentagon diagram commutes for all A,B,C,D in C

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))

αA,B,C⊗1D

αA⊗B,C,D

αA,B⊗C,D

1A⊗αB,C,D

αA,B,C⊗D

• the following triangle diagram commutes for all A,B in C

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA⊗1B
1A⊗λB

Let us recall some concepts of category theory. A zero object of a category C is an
object with precisely one map to and from each object. We denote a zero object as O.

Given a pair of objects A and B in a category C, we say that the object P is a product
of A and B if there exist maps P

p1−→ A and P
p2−→ B such that for any pair of maps

X → A and X → B there is a unique X → P that the following diagram commutes:

A

X P

B

p1

p2

Diagram 1

3



Sum is dual to product. In other words, for given objects A, B we say that S is their
sum if there exist maps A

u1−→ S and B
u2−→ S such that for every pair of maps A→ X and

B → X there is a unique map S → X that the diagram dual to Diagram 1 commutes.
For two maps A

x−→ B and A
y−→ B we say that the map K → A is a difference kernel

of x and y if

• K → A
x−→ B = K → A

y−→ B,

• for all X → A such that K → A
x−→ B = K → A

y−→ B there is a unique K → X
such that the following diagram commutes:

X

K A

A difference cokernel is the notion dual to a difference kernel.

Suppose C has a zero object. Then we define the zero map A
0−→ B to be the unique

map A → O → B. The kernel of A
x−→ B is defined as a difference kernel of A

0−→ B and

A
x−→ B. The cokernel of A

x−→ B is defined as a difference cokernel of A
0−→ B and A

x−→ B.
We say that a morphism f : B → C is a monomorphism if, for any given morphisms

g1, g2 : A → B, the equality f ◦ g1 = f ◦ g2 implies g1 = g2. We say that a morphism
f : A → B is an epimorphism if, for any given morphisms g1, g2 : B → C, the equality
g1 ◦ f = g2 ◦ f implies g1 = g2.

Definition 2 (Abelian category according to [Fre64]). A category C is abelian if

• C has a zero object,

• for every pair of objects there is a product and a sum,

• every morphism has a kernel and a cokernel,

• every monomorphism is a kernel of a morphism and every epimorphism is a cokernel
of a morphism.

Definition 3 (Lie algebra gl(∞)). We define the Lie algebra gl(∞) as the matrix Lie
algebra which consists of all infinite matrices {ai,j} : i, j ∈ N over C that contain only
finitely many nonzero entries.

Definition 4 (Injective object). An object Q in a category C is said to be injective if for
every monomorphism f : X → Y and every morphism g : X → Q there exists a morphism
h : Y → Q extending g to Y , i.e. such that h ◦ f = g.

X Y

Q

f

g
h
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Definition 5 (Socle). For a module M we define the socle of M as the sum of all its
simple submodules. We denote the socle of M as socM .

A module is semisimple if it coincides with its socle. An important tool to study
nonsemisimple modules is the socle filtration.

Definition 6 (Socle filtration). We define sociM iteratively as soc0M = 0, soc1M =
socM and sociM := π−1i (soc(M/soci−1M) where πi is the projection from M to M/sociM .
As a result we obtain the socle filtration of M :

0 ⊆ soc1M ⊆ soc2M ⊆ ... ⊆M

The i-th level of the socle filtration of M is defined as sociM := sociM/soci−1M .

Definition 7 (Partition). A partition λ of nonnegative integer n is a collection λ = (λ1 ≥
λ2 ≥ · · · ≥ λk > 0) where all λi are positive integers and

∑
i λi = n.

We represent partitions by Young diagrams.

Definition 8 (Young diagram). The Young diagram T of a partition α = (a1, ..., an) is a
table whose i-th row contains ai cells.

Young diagram T for α = (3, 3, 1)

For two partitions α = (a1, ..., an), β = (b1, ..., bn) such that ai ≥ bi ∀i, we define the
skew Young diagram of shape α, β as the set theoretic difference of Young diagrams of α
and β.

Skew Young diagram T ′ of shape α = (4, 3, 2), β = (2, 1)

Definition 9 (Partition conjugation). For a partition α we say that the partition α′ is
conjugate to α if the Young diagram of α coincides with the transposed Young diagram of
α′. For a partition α we denote its conjugate by α′.

Young diagrams for α = (3, 3, 1) and α′ = (3, 2, 2)

Definition 10 (Partition concatenation). For partitions α = (a1, ..., an), β = (b1, ..., bn)
we define their concatenation as α+ β = (a1, ..., an, b1, ..., bn).
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Definition 11 (Skew Young tableau). For a skew Young diagram T we define a skew
Young tableau T ′ by assigning a positive integer to every cell of T . We name this integer
the filling number of the cell. We say that a skew Young tableau is semistandard if the
filling numbers do not decrease along each row and increase along each column.

1 1
1 2

2 3

A semistandard skew Young tableau of shape α = (4, 3, 2), β = (2, 1)

Definition 12 (Lattice word). We say that a sequence a1, a2, ..., an of positive integers is
a lattice word if for any m ≤ n any number i occurs in the sequence a1, a2, ..., am at least
as often as the number i+ 1.

Definition 13 (Littlewood-Richardson tableau). Fix three partitions α, β = (b1, ..., bn), γ.
We say that T is a Littlewood-Richardson tableau for α, β, γ if the following holds:

• T is a semistandard skew Young tableaux of shape α, γ.

• T has exactly bi entries that are equal to i.

• The sequence obtained by concatenating the filling numbers of the reversed rows of
T from top to bottom is a lattice word.

We define the Littlewood-Richardson coefficient Nγ
α,β as the number of different Littlewood-

Richardson tableaux for partitions α, β, γ.

1 1
1 2

2 3

A Littlewood-Richardson tableau for α = (2, 1), β = (3, 2, 1), γ = (4, 3, 2)
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2 Background

This section provides some background concerning the objects which we are investigating
and presents a number of statements motivating our research.

The paper [PS14] introduces a class of infinite-dimensional matrix Lie algebras glM

called Mackey Lie algebras, which consist of infinite matrices over C with the property
that every row and every column contains only finitely many nonzero elements. Note that
this does not necessarily mean that every matrix has finitely many nonzero entries.

Consider two modules V and V∗ over the Lie algebra glM : they consist respectively
of all infinite finitary 1 columns and all infinite finitary rows of glM . The action of glM

on V is given by g · c = gc for g ∈ glM , c ∈ V , and the action of glM on V∗ is given by
g ·r = −rg for r ∈ V∗. It is easy to see that the modules V and V∗ are simple. This follows
from the observation that for any given nonzero finitary column (respectively row) c and
every other finitary column (respectively row) c′ there is g ∈ glM that maps c′ to c.

The third module we consider is V ∗ - the algebraic dual space of V (the space of
homomorphisms from V to C). This module is not simple as V∗ is a submodule of V ∗.
The latter holds because the action of glM on V ∗ is given by the same formula as for V∗:
g · r = −rg, and V∗ contains only finitary rows while V ∗ contains all rows. In addition V∗
is the only proper nonzero submodule of V ∗. This follows from the following two facts:

• V ∗/V∗ is a simple glM -module (see [CP18]).

• The exact sequence 0 → V∗ → V ∗ → V ∗/V∗ → 0 does not split as the subalgebra
gl(∞) of glM maps V ∗ to V∗ when acting on V ∗, while the space of gl(∞)-invariants
in V ∗ equals zero.

Consequently socV ∗ = V∗.
Now we introduce the category T3

glM
. Its objects are glM -modules isomorphic to sub-

quotients of finite direct sums of the form ⊕
n,m,p

V ⊗n ⊗ (V ∗)⊗m ⊗ (V∗)
⊗p for n,m, p ∈ N.

The morphisms of T3
glM

are morphisms of the glM -modules. The category T3
glM

is a tensor

category with respect to the usual tensor product ⊗ and it is the minimal abelian tensor
category which is closed under taking submodules and contains V and V ∗.

It is important to determine what are the simple modules in T3
glM

. We define (·)λ to

be the Schur functor (see for example [Ful04]) associated with a partition λ. From [DCPS]
we know that Vµ ⊗ (V∗)ν is indecomposable and has a simple socle, so this justifies the
definition of the following simple module: Vµ,ν := soc(Vµ⊗ (V∗)ν). Moreover by [CP18] all
simple objects in T3

glM
are (up to isomorphism) tensor products Vλ,µ,ν := (V ∗/V∗)λ⊗ Vµ,ν

and they are mutually nonisomorphic for different ordered triples of partitions (λ, µ, ν).
This means that we can parametrize all simple objects by three partitions.

It is known that every indecomposable injective object of T3
glM

is isomorphic to a

direct summand of (V ∗/V∗)
⊗m ⊗ (V ∗)⊗n ⊗ (V )⊗p for fixed m,n, p. More precisely, it is a

result in [CP18] that indecomposable injectives in T3
glM

are up to isomorphism Iλ,µ,ν :=

(V ∗/V∗)λ ⊗ (V ∗)µ ⊗ Vν .

1An infinite sequence is finitary if it has finitely many nonzero entries.
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The study of injective objects is crucial for understanding the structure of the category
T3
glM

. We are going to investigate the socle filtrations of the objects Iλ,µ,ν . Note that the

socle filtration of a general glM -module may be infinite or it may not be exhaustive in the
sense that the union of soci may not be equal to M . However, the socle filtration of Iλ,µ,ν
is finite and exhaustive, and it turns out to be a powerful instrument for understanding
T3
glM

.

The formula for the explicit computation of sock(Iλ,µ,ν) is given by

sock(Iλ,µ,ν) '
⊕

l+r=k−1

⊕
|α|=l

⊕
|δ|=r

⊕
ζ,γ,φ,β

N ζ
λ,αN

µ
α,βN

β
γ,δN

ν
φ,δVζ,γ,φ, (1)

where Nγ
α,β is the Littlewood-Richardson coefficient and Vζ,γ,φ is the corresponding simple

object of T3
glM

[CP18]. The socle filtration is finite so it makes sense to define the Loewy

length of Iλ,µ,ν as the length of the socle filtration of Iλ,µ,ν . And finally it is convenient to
denote the multiplicity of Vα,β,γ in the k-th layer of socle filtration of the object Iλ,µ,ν as
[sock(Iλ,µ,ν) : Vα,β,γ ]

The somewhat obscure formula (1) is the entry point of our research. The idea is
to study the algebraic properties of T3

glM
from a combinatorial point of view. The main

difficulty for understanding the formula is the summation over all possible partitions.
Therefore, as a first step we wrote a computer program to calculate the layers of the socle
filtration. The program goes through all partitions until the corresponding Littlewood-
Richardson coefficients equal to 0, something a human can hardly do. It produced tables
of socle filtrations which turned out to be very helpful. First, these tables confirmed our
conjecture stating that by conjugating all three partitions of Iλ,µ,ν every object Vζ,γ,φ in
every layer of the socle filtration of Iλ′,µ′,ν′ gets conjugated to Vζ′,γ′,φ′ . This conjecture
was proven as Theorem 1. In addition, the tables helped us see the pattern for the length
of socle filtrations and eventually to prove Theorem 2.
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3 Properties of Littlewood-Richardson coefficients

This section contains several properties of Littlewood-Richardson coefficients that are
essential for the proof of main results.

Lemma 1. Let Nγ
α,β be a Littlewood-Richardson coefficient for partitions α, β, γ. Then

Nγ
α,β 6= 0 implies |γ| = |α|+ |β|.

Proof. From the definition of Littlewood-Richardson tableau for α, β, γ it follows that the
number of its cells is |γ| − |α| and that the tableau contains |β| entries. This means that
if such a tableau exists then |γ| − |α| = |β|, i.e. |γ| = |α|+ |β|.

Lemma 2. Suppose α, β, γ are partitions and α′, β′, γ′ are their conjugates. Then

Nγ
α,β = Nγ′

α′,β′ .

The proof of this fact see for example in [HS92].

Definition 14 (Standard filling). Consider a skew Young diagram D for partitions α, β.
We say that a Young tableau T is the standard filling of D if D and T have the same
shape and the filling number in every cell equals the number of the cell in its column.

1 1
1 1 1 2
2 2 2
3

The standard filling of the skew Young diagram for α = (5, 3), β = (5, 4, 1)

Now, let us prove several useful properties of standard fillings.

Proposition 1. The standard filling of a skew Young diagram is always a semistandard
skew Young tableau, i.e. the entries weakly increase along each row and strictly increase
down each column.

Proof. Let T be the skew Young tableau obtained as the standard filling of a skew Young
diagram D. First, we notice that the filling numbers strictly increase down the columns
by construction.

Now suppose there is a row i and two cells Di,j , Di,j+1 with filling numbers Ti,j , Ti,j+1

satisfying Ti,j > Ti,j+1. By the definition of standard filling this means that the cell Di,j

has more cells above it than Di,j+1. However this is impossible by the construction of
skew Young diagram. This contradiction shows that T is indeed a semistandard Young
tableau.

Proposition 2. The sequence obtained by concatenating the reversed rows of a standard
filling of a skew Young diagram D is a lattice word.
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Proof. In this proof we say that a prefix of a sequence a1, a2, ..., an is a sequence a1, a2, ..., am
for some m ≤ n.

We need to show that, for the sequence of concatenated reversed rows A every prefix
contains the number i at least as many times as the number i + 1. But this is an easy
consequence of the fact that the filling number of the cell Di,j is preceded in A by the
filling numbers of all cells above Di,j . Then, by the construction of standard filling, the
number i+1 appears in any prefix of A at most as many times as the number i. Therefore
the sequence obtained by concatenating the reversed rows of a standard filling is a lattice
word.

Keeping the properties of a standard filling in mind, we get back to the properties of
Littlewood-Richardson coefficients.

Lemma 3. Suppose α, β are two partitions. Then Nα+β
α,β 6= 0.

Proof. Recall that a Littlewood-Richardson coefficient is defined as the number of Littlewood-
Richardson tableaux of a certain kind, and consider the skew Young diagram D of shape
α+β, α. Let us prove that the standard filling T of D is a Littlewood-Richardson tableau,
thus proving that at least one such tableau exists. Then Nα+β

α,β ≥ 1 will follow.
Let β = (b1, b2, ..., bn). It suffices to show three things: T is a semistandard skew

Young tableau, the sequence obtained by concatenating its reversed rows is a lattice word,
and the tableau has exactly bi entries that are equal to i.

The first two statements were proved as Propositions 1 and 2, so we only need to show
that the filling number i is assigned to bi cells of D. Consider the Young diagram of the
partition α+β, each row of which comes from α or β. Next consider the row corresponding
to the filling number bi (it arises from β) and fill every box in it with numbers i. Leave
the rows corresponding to α empty. Denote this tableau as T ′.

Now we need to show that the filling numbers in T ′ are in one to one correspondence
with the filling numbers in T . By the definition of skew Young diagram, every column of
T contains as many numbers as the same column of T ′. But the entries in any column
of T and T ′ take all values from 1 to m for a certain integer m. These two observations
imply that the numbers appearing in T are the same as the numbers in T ′. Since the
number i is written in exactly bi cells of T ′, the same applies for T .

1 1 1 1 1

2 2 2 2

3

Tableau T ′ for α = (5, 3), β = (5, 4, 1)

Thus it was shown that there is at least one tableau for α, β, α + β, which concludes
the proof.
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4 Symmetry of socle filtration with respect to partition con-
jugation

Theorem 1. Let sock(Iλ,µ,ν) be isomorphic to
⊕
miVζi,γi,φi. Then sock(Iλ′,µ′,ν′) is iso-

morphic to
⊕
miVζ′i,γ′i,φ′i. In other words, [sock(Iλ,µ,ν) : Vα,β,γ ] = [sock(Iλ′,µ′,ν′) : Vα′,β′,γ′ ].

Proof. As we stated in Section 2:

sock(Iλ,µ,ν) '
⊕

l+r=k−1

⊕
|α|=l

⊕
|δ|=r

⊕
ζ,γ,φ,β

N ζ
λ,αN

µ
α,βN

β
γ,δN

ν
φ,δVζ,γ,φ

where the summation is taken over all possible partitions.
Fix i and set m := mi, ζ := ζi, γ := γi, φ := φi. Let m′ be the multiplicity of Vζ′,γ′,φ′

in sock(Iλ′,µ′,ν′). We show now that m′ ≥ m.
Formula (1) implies that there exists a set (αj , δj , βj) such that |αj |+ |δj | = k − 1 for

all j and ∑
j

N ζ
λ,αj

Nµ
αj ,βj

N
βj
γ,δj

Nν
φ,δj

= m.

Then Lemma 2 shows that ∑
j

N ζ′

λ′,α′j
Nµ′

α′j ,β
′
j
N
β′j
γ′,δ′j

Nν′

φ′,δ′j
= m.

Therefore m′ ≥ m.
For every partition α the equality (α′)′ = α holds, so we can apply the same argument

to sock(Iλ′,µ′,ν′) and conclude that [sock(Iλ,µ,ν) : Vα,β,γ ] ≥ [sock(Iλ′,µ′,ν′) : Vα′,β′,γ′ ]. These
two inequalities prove the theorem.

Conjecture 1. Theorem 1 can be considered as combinatorial evidence for the following
conjecture: there exists a tensor functor of autoequivalence (·)′ : T3

glM
→ T3

glM
such that

(Vα,β,γ)′ ' Vα′,β′,γ′.

This conjecture is inspired by Serganova’s functor of tensor autoequivalence on the
category Tgl(∞), see [Ser14]. It is very likely that the functor of Conjecture 1 can be
constructed in a way similar to Serganova’s functor by passing to a Lie superalgebra
analogue of the Mackey Lie algebra glM .
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5 Length of socle filtration

Proposition 3. If Vζ,γ,φ ⊂ sock(Iλ,µ,ν) then |γ| = |µ| − k + 1.

Proof. From formula (1) for sock(Iλ,µ,ν) we conclude that if sock(Iλ,µ,ν) is not zero then

for every Vζ,γ,φ there is a set of triples (β, δ, α) such that Nβ
γ,δ 6= 0 and Nµ

α,β 6= 0. Then
by Lemma 1 it follows that |β| = |γ|+ |δ| and |µ| = |α|+ |β| = |α|+ |γ|+ |δ|. But |α| and
|δ| satisfy |α|+ |δ| = k − 1, so |µ| = k − 1 + |γ|, or equivalently |γ| = |µ| − k + 1.

Now with the help of Proposition 3 we can prove the following theorem:

Theorem 2. The Loewy length of Iλ,µ,ν is equal to |µ|+ 1.

Proof. Let us show that soc|µ|+1(Iλ,µ,ν) contains Vλ+µ,(∅),ν as a submodule, and is therefore
nonzero. It suffices to prove that there are α, δ, β such that

Nλ+µ
λ,α Nµ

α,βN
β
(∅),δN

ν
ν,δ 6= 0

and |α|+ |δ| = |µ|. Set α := µ, δ := (∅), β := (∅). Then Nµ
µ,(∅) = N

(∅)
(∅),(∅) = Nν

ν,(∅) = 1 and
thus

Nλ+µ
λ,µ Nµ

µ,(∅)N
(∅)
(∅),(∅)N

ν
ν,(∅) = Nλ+µ

λ,µ

is nonzero by Lemma 3.
Now we know that soc|µ|+1(Iλ,µ,ν) is nonzero, and according to Proposition 3,

soc|µ|+2(Iλ,µ,ν) = 0,

which finishes the proof of the theorem.
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6 Appendix

This appendix contains the socle filtration tables for indecomposable injective objects.
Socle filtrations of Iα,β,γ are sorted by |α| + |β| + |γ|. The i-th level of a table, counted
from bottom to top, represents sock(Iλ,µ,ν). The tables were generated with a program
based on formula (1).

|α|+ |β|+ |γ| = 0:

V(∅)(∅)(∅)

|α|+ |β|+ |γ| = 1:

V(∅)(∅)(1) ,
V(1)(∅)(∅)
V(∅)(1)(∅)

, V(1)(∅)(∅)

|α|+ |β|+ |γ| = 2:

V(∅)(∅)(1,1) , V(∅)(∅)(2) ,
V(∅)(∅)(∅)

⊕
V(1)(∅)(1)

V(∅)(1)(1)
,

V(1,1)(∅)(∅)
V(1)(1)(∅)
V(∅)(1,1)(∅)

,

V(2)(∅)(∅)
V(1)(1)(∅)
V(∅)(2)(∅)

, V(1)(∅)(1) ,

V(1,1)(∅)(∅)
⊕
V(2)(∅)(∅)

V(1)(1)(∅)
, V(1,1)(∅)(∅) , V(2)(∅)(∅)

|α|+ |β|+ |γ| = 3:

V(∅)(∅)(1,1,1) , V(∅)(∅)(2,1) , V(∅)(∅)(3) ,
V(∅)(∅)(1)

⊕
V(1)(∅)(1,1)

V(∅)(1)(1,1)
,
V(∅)(∅)(1)

⊕
V(1)(∅)(2)

V(∅)(1)(2)
,

V(1)(∅)(∅)
⊕
V(1,1)(∅)(1)

V(∅)(1)(∅)
⊕
V(1)(1)(1)

V(∅)(1,1)(1)

,

V(1)(∅)(∅)
⊕
V(2)(∅)(1)

V(∅)(1)(∅)
⊕
V(1)(1)(1)

V(∅)(2)(1)

,

V(1,1,1)(∅)(∅)
V(1,1)(1)(∅)
V(1)(1,1)(∅)
V(∅)(1,1,1)(∅)

,

V(2,1)(∅)(∅)
V(1,1)(1)(∅)

⊕
V(2)(1)(∅)

V(1)(1,1)(∅)
⊕
V(1)(2)(∅)

V(∅)(2,1)(∅)

,

V(3)(∅)(∅)
V(2)(1)(∅)
V(1)(2)(∅)
V(∅)(3)(∅)

,

V(1)(∅)(1,1) , V(1)(∅)(2) ,

V(1)(∅)(∅)
⊕
V(1,1)(∅)(1)

⊕
V(2)(∅)(1)

V(1)(1)(1)
,

V(1,1,1)(∅)(∅)
⊕
V(2,1)(∅)(∅)

V(1,1)(1)(∅)
⊕
V(2)(1)(∅)

V(1)(1,1)(∅)

,

V(2,1)(∅)(∅)
⊕
V(3)(∅)(∅)

V(1,1)(1)(∅)
⊕
V(2)(1)(∅)

V(1)(2)(∅)

, V(1,1)(∅)(1) ,

V(2)(∅)(1) ,
V(1,1,1)(∅)(∅)

⊕
V(2,1)(∅)(∅)

V(1,1)(1)(∅)
,
V(2,1)(∅)(∅)

⊕
V(3)(∅)(∅)

V(2)(1)(∅)
, V(1,1,1)(∅)(∅) , V(2,1)(∅)(∅) ,

V(3)(∅)(∅)

|α|+ |β|+ |γ| = 4:

V(∅)(∅)(1,1,1,1) , V(∅)(∅)(2,1,1) , V(∅)(∅)(2,2) , V(∅)(∅)(3,1) , V(∅)(∅)(4) ,
V(∅)(∅)(1,1)

⊕
V(1)(∅)(1,1,1)

V(∅)(1)(1,1,1)
,

V(∅)(∅)(1,1)
⊕
V(∅)(∅)(2)

⊕
V(1)(∅)(2,1)

V(∅)(1)(2,1)
,
V(∅)(∅)(2)

⊕
V(1)(∅)(3)

V(∅)(1)(3)
,

V(∅)(∅)(∅)
⊕
V(1)(∅)(1)

⊕
V(1,1)(∅)(1,1)

V(∅)(1)(1)
⊕
V(1)(1)(1,1)

V(∅)(1,1)(1,1)

,

V(1)(∅)(1)
⊕
V(1,1)(∅)(2)

V(∅)(1)(1)
⊕
V(1)(1)(2)

V(∅)(1,1)(2)

,

V(1)(∅)(1)
⊕
V(2)(∅)(1,1)

V(∅)(1)(1)
⊕
V(1)(1)(1,1)

V(∅)(2)(1,1)

,
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V(∅)(∅)(∅)
⊕
V(1)(∅)(1)

⊕
V(2)(∅)(2)

V(∅)(1)(1)
⊕
V(1)(1)(2)

V(∅)(2)(2)

,

V(1,1)(∅)(∅)
⊕
V(1,1,1)(∅)(1)

V(1)(1)(∅)
⊕
V(1,1)(1)(1)

V(∅)(1,1)(∅)
⊕
V(1)(1,1)(1)

V(∅)(1,1,1)(1)

,

V(1,1)(∅)(∅)
⊕
V(2)(∅)(∅)

⊕
V(2,1)(∅)(1)

2V(1)(1)(∅)
⊕
V(1,1)(1)(1)

⊕
V(2)(1)(1)

V(∅)(1,1)(∅)
⊕
V(∅)(2)(∅)

⊕
V(1)(1,1)(1)

⊕
V(1)(2)(1)

V(∅)(2,1)(1)

,

V(2)(∅)(∅)
⊕
V(3)(∅)(1)

V(1)(1)(∅)
⊕
V(2)(1)(1)

V(∅)(2)(∅)
⊕
V(1)(2)(1)

V(∅)(3)(1)

,

V(1,1,1,1)(∅)(∅)
V(1,1,1)(1)(∅)
V(1,1)(1,1)(∅)
V(1)(1,1,1)(∅)
V(∅)(1,1,1,1)(∅)

,

V(2,1,1)(∅)(∅)
V(1,1,1)(1)(∅)

⊕
V(2,1)(1)(∅)

V(1,1)(1,1)(∅)
⊕
V(1,1)(2)(∅)

⊕
V(2)(1,1)(∅)

V(1)(1,1,1)(∅)
⊕
V(1)(2,1)(∅)

V(∅)(2,1,1)(∅)

,

V(2,2)(∅)(∅)
V(2,1)(1)(∅)

V(1,1)(1,1)(∅)
⊕
V(2)(2)(∅)

V(1)(2,1)(∅)
V(∅)(2,2)(∅)

,

V(3,1)(∅)(∅)
V(2,1)(1)(∅)

⊕
V(3)(1)(∅)

V(1,1)(2)(∅)
⊕
V(2)(1,1)(∅)

⊕
V(2)(2)(∅)

V(1)(2,1)(∅)
⊕
V(1)(3)(∅)

V(∅)(3,1)(∅)

,

V(4)(∅)(∅)
V(3)(1)(∅)
V(2)(2)(∅)
V(1)(3)(∅)
V(∅)(4)(∅)

, V(1)(∅)(1,1,1) , V(1)(∅)(2,1) , V(1)(∅)(3) ,

V(1)(∅)(1)
⊕
V(1,1)(∅)(1,1)

⊕
V(2)(∅)(1,1)

V(1)(1)(1,1)
,
V(1)(∅)(1)

⊕
V(1,1)(∅)(2)

⊕
V(2)(∅)(2)

V(1)(1)(2)
,

V(1,1)(∅)(∅)
⊕
V(2)(∅)(∅)

⊕
V(1,1,1)(∅)(1)

⊕
V(2,1)(∅)(1)

V(1)(1)(∅)
⊕
V(1,1)(1)(1)

⊕
V(2)(1)(1)

V(1)(1,1)(1)

,

V(1,1)(∅)(∅)
⊕
V(2)(∅)(∅)

⊕
V(2,1)(∅)(1)

⊕
V(3)(∅)(1)

V(1)(1)(∅)
⊕
V(1,1)(1)(1)

⊕
V(2)(1)(1)

V(1)(2)(1)

,

V(1,1,1,1)(∅)(∅)
⊕
V(2,1,1)(∅)(∅)

V(1,1,1)(1)(∅)
⊕
V(2,1)(1)(∅)

V(1,1)(1,1)(∅)
⊕
V(2)(1,1)(∅)

V(1)(1,1,1)(∅)

,

V(2,1,1)(∅)(∅)
⊕
V(2,2)(∅)(∅)

⊕
V(3,1)(∅)(∅)

V(1,1,1)(1)(∅)
⊕

2V(2,1)(1)(∅)
⊕
V(3)(1)(∅)

V(1,1)(1,1)(∅)
⊕
V(1,1)(2)(∅)

⊕
V(2)(1,1)(∅)

⊕
V(2)(2)(∅)

V(1)(2,1)(∅)

,

V(3,1)(∅)(∅)
⊕
V(4)(∅)(∅)

V(2,1)(1)(∅)
⊕
V(3)(1)(∅)

V(1,1)(2)(∅)
⊕
V(2)(2)(∅)

V(1)(3)(∅)

, V(1,1)(∅)(1,1) ,

V(1,1)(∅)(2) , V(2)(∅)(1,1) , V(2)(∅)(2) ,

V(1,1)(∅)(∅)
⊕
V(1,1,1)(∅)(1)

⊕
V(2,1)(∅)(1)

V(1,1)(1)(1)
,
V(2)(∅)(∅)

⊕
V(2,1)(∅)(1)

⊕
V(3)(∅)(1)

V(2)(1)(1)
,

V(1,1,1,1)(∅)(∅)
⊕
V(2,1,1)(∅)(∅)

⊕
V(2,2)(∅)(∅)

V(1,1,1)(1)(∅)
⊕
V(2,1)(1)(∅)

V(1,1)(1,1)(∅)

,

V(2,1,1)(∅)(∅)
⊕
V(3,1)(∅)(∅)

V(1,1,1)(1)(∅)
⊕
V(2,1)(1)(∅)

V(1,1)(2)(∅)

,

V(2,1,1)(∅)(∅)
⊕
V(3,1)(∅)(∅)

V(2,1)(1)(∅)
⊕
V(3)(1)(∅)

V(2)(1,1)(∅)

,

V(2,2)(∅)(∅)
⊕
V(3,1)(∅)(∅)

⊕
V(4)(∅)(∅)

V(2,1)(1)(∅)
⊕
V(3)(1)(∅)

V(2)(2)(∅)

, V(1,1,1)(∅)(1) , V(2,1)(∅)(1) , V(3)(∅)(1) ,
V(1,1,1,1)(∅)(∅)

⊕
V(2,1,1)(∅)(∅)

V(1,1,1)(1)(∅)
,
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V(2,1,1)(∅)(∅)
⊕
V(2,2)(∅)(∅)

⊕
V(3,1)(∅)(∅)

V(2,1)(1)(∅)
,
V(3,1)(∅)(∅)

⊕
V(4)(∅)(∅)

V(3)(1)(∅)
, V(1,1,1,1)(∅)(∅) , V(2,1,1)(∅)(∅) ,

V(2,2)(∅)(∅) , V(3,1)(∅)(∅) , V(4)(∅)(∅)

|α|+ |β|+ |γ| = 5:

V(∅)(∅)(1,1,1,1,1) , V(∅)(∅)(2,1,1,1) , V(∅)(∅)(2,2,1) , V(∅)(∅)(3,1,1) , V(∅)(∅)(3,2) , V(∅)(∅)(4,1) ,

V(∅)(∅)(5) ,
V(∅)(∅)(1,1,1)

⊕
V(1)(∅)(1,1,1,1)

V(∅)(1)(1,1,1,1)
,
V(∅)(∅)(1,1,1)

⊕
V(∅)(∅)(2,1)

⊕
V(1)(∅)(2,1,1)

V(∅)(1)(2,1,1)
,

V(∅)(∅)(2,1)
⊕
V(1)(∅)(2,2)

V(∅)(1)(2,2)
,
V(∅)(∅)(2,1)

⊕
V(∅)(∅)(3)

⊕
V(1)(∅)(3,1)

V(∅)(1)(3,1)
,
V(∅)(∅)(3)

⊕
V(1)(∅)(4)

V(∅)(1)(4)
,

V(∅)(∅)(1)
⊕
V(1)(∅)(1,1)

⊕
V(1,1)(∅)(1,1,1)

V(∅)(1)(1,1)
⊕
V(1)(1)(1,1,1)

V(∅)(1,1)(1,1,1)

,

V(∅)(∅)(1)
⊕
V(1)(∅)(1,1)

⊕
V(1)(∅)(2)

⊕
V(1,1)(∅)(2,1)

V(∅)(1)(1,1)
⊕
V(∅)(1)(2)

⊕
V(1)(1)(2,1)

V(∅)(1,1)(2,1)

,

V(1)(∅)(2)
⊕
V(1,1)(∅)(3)

V(∅)(1)(2)
⊕
V(1)(1)(3)

V(∅)(1,1)(3)

,

V(1)(∅)(1,1)
⊕
V(2)(∅)(1,1,1)

V(∅)(1)(1,1)
⊕
V(1)(1)(1,1,1)

V(∅)(2)(1,1,1)

,

V(∅)(∅)(1)
⊕
V(1)(∅)(1,1)

⊕
V(1)(∅)(2)

⊕
V(2)(∅)(2,1)

V(∅)(1)(1,1)
⊕
V(∅)(1)(2)

⊕
V(1)(1)(2,1)

V(∅)(2)(2,1)

,

V(∅)(∅)(1)
⊕
V(1)(∅)(2)

⊕
V(2)(∅)(3)

V(∅)(1)(2)
⊕
V(1)(1)(3)

V(∅)(2)(3)

,

V(1)(∅)(∅)
⊕
V(1,1)(∅)(1)

⊕
V(1,1,1)(∅)(1,1)

V(∅)(1)(∅)
⊕
V(1)(1)(1)

⊕
V(1,1)(1)(1,1)

V(∅)(1,1)(1)
⊕
V(1)(1,1)(1,1)

V(∅)(1,1,1)(1,1)

,

V(1,1)(∅)(1)
⊕
V(1,1,1)(∅)(2)

V(1)(1)(1)
⊕
V(1,1)(1)(2)

V(∅)(1,1)(1)
⊕
V(1)(1,1)(2)

V(∅)(1,1,1)(2)

,

V(1)(∅)(∅)
⊕
V(1,1)(∅)(1)

⊕
V(2)(∅)(1)

⊕
V(2,1)(∅)(1,1)

V(∅)(1)(∅)
⊕

2V(1)(1)(1)
⊕
V(1,1)(1)(1,1)

⊕
V(2)(1)(1,1)

V(∅)(1,1)(1)
⊕
V(∅)(2)(1)

⊕
V(1)(1,1)(1,1)

⊕
V(1)(2)(1,1)

V(∅)(2,1)(1,1)

,

V(1)(∅)(∅)
⊕
V(1,1)(∅)(1)

⊕
V(2)(∅)(1)

⊕
V(2,1)(∅)(2)

V(∅)(1)(∅)
⊕

2V(1)(1)(1)
⊕
V(1,1)(1)(2)

⊕
V(2)(1)(2)

V(∅)(1,1)(1)
⊕
V(∅)(2)(1)

⊕
V(1)(1,1)(2)

⊕
V(1)(2)(2)

V(∅)(2,1)(2)

,

V(2)(∅)(1)
⊕
V(3)(∅)(1,1)

V(1)(1)(1)
⊕
V(2)(1)(1,1)

V(∅)(2)(1)
⊕
V(1)(2)(1,1)

V(∅)(3)(1,1)

,

V(1)(∅)(∅)
⊕
V(2)(∅)(1)

⊕
V(3)(∅)(2)

V(∅)(1)(∅)
⊕
V(1)(1)(1)

⊕
V(2)(1)(2)

V(∅)(2)(1)
⊕
V(1)(2)(2)

V(∅)(3)(2)

,

V(1,1,1)(∅)(∅)
⊕
V(1,1,1,1)(∅)(1)

V(1,1)(1)(∅)
⊕
V(1,1,1)(1)(1)

V(1)(1,1)(∅)
⊕
V(1,1)(1,1)(1)

V(∅)(1,1,1)(∅)
⊕
V(1)(1,1,1)(1)

V(∅)(1,1,1,1)(1)

,

V(1,1,1)(∅)(∅)
⊕
V(2,1)(∅)(∅)

⊕
V(2,1,1)(∅)(1)

2V(1,1)(1)(∅)
⊕
V(2)(1)(∅)

⊕
V(1,1,1)(1)(1)

⊕
V(2,1)(1)(1)

2V(1)(1,1)(∅)
⊕
V(1)(2)(∅)

⊕
V(1,1)(1,1)(1)

⊕
V(1,1)(2)(1)

⊕
V(2)(1,1)(1)

V(∅)(1,1,1)(∅)
⊕
V(∅)(2,1)(∅)

⊕
V(1)(1,1,1)(1)

⊕
V(1)(2,1)(1)

V(∅)(2,1,1)(1)

,

V(2,1)(∅)(∅)
⊕
V(2,2)(∅)(1)

V(1,1)(1)(∅)
⊕
V(2)(1)(∅)

⊕
V(2,1)(1)(1)

V(1)(1,1)(∅)
⊕
V(1)(2)(∅)

⊕
V(1,1)(1,1)(1)

⊕
V(2)(2)(1)

V(∅)(2,1)(∅)
⊕
V(1)(2,1)(1)

V(∅)(2,2)(1)

,
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V(2,1)(∅)(∅)
⊕
V(3)(∅)(∅)

⊕
V(3,1)(∅)(1)

V(1,1)(1)(∅)
⊕

2V(2)(1)(∅)
⊕
V(2,1)(1)(1)

⊕
V(3)(1)(1)

V(1)(1,1)(∅)
⊕

2V(1)(2)(∅)
⊕
V(1,1)(2)(1)

⊕
V(2)(1,1)(1)

⊕
V(2)(2)(1)

V(∅)(2,1)(∅)
⊕
V(∅)(3)(∅)

⊕
V(1)(2,1)(1)

⊕
V(1)(3)(1)

V(∅)(3,1)(1)

,

V(3)(∅)(∅)
⊕
V(4)(∅)(1)

V(2)(1)(∅)
⊕
V(3)(1)(1)

V(1)(2)(∅)
⊕
V(2)(2)(1)

V(∅)(3)(∅)
⊕
V(1)(3)(1)

V(∅)(4)(1)

,

V(1,1,1,1,1)(∅)(∅)
V(1,1,1,1)(1)(∅)
V(1,1,1)(1,1)(∅)
V(1,1)(1,1,1)(∅)
V(1)(1,1,1,1)(∅)
V(∅)(1,1,1,1,1)(∅)

,

V(2,1,1,1)(∅)(∅)
V(1,1,1,1)(1)(∅)

⊕
V(2,1,1)(1)(∅)

V(1,1,1)(1,1)(∅)
⊕
V(1,1,1)(2)(∅)

⊕
V(2,1)(1,1)(∅)

V(1,1)(1,1,1)(∅)
⊕
V(1,1)(2,1)(∅)

⊕
V(2)(1,1,1)(∅)

V(1)(1,1,1,1)(∅)
⊕
V(1)(2,1,1)(∅)

V(∅)(2,1,1,1)(∅)

,

V(2,2,1)(∅)(∅)
V(2,1,1)(1)(∅)

⊕
V(2,2)(1)(∅)

V(1,1,1)(1,1)(∅)
⊕
V(2,1)(1,1)(∅)

⊕
V(2,1)(2)(∅)

V(1,1)(1,1,1)(∅)
⊕
V(1,1)(2,1)(∅)

⊕
V(2)(2,1)(∅)

V(1)(2,1,1)(∅)
⊕
V(1)(2,2)(∅)

V(∅)(2,2,1)(∅)

,

V(3,1,1)(∅)(∅)
V(2,1,1)(1)(∅)

⊕
V(3,1)(1)(∅)

V(1,1,1)(2)(∅)
⊕
V(2,1)(1,1)(∅)

⊕
V(2,1)(2)(∅)

⊕
V(3)(1,1)(∅)

V(1,1)(2,1)(∅)
⊕
V(1,1)(3)(∅)

⊕
V(2)(1,1,1)(∅)

⊕
V(2)(2,1)(∅)

V(1)(2,1,1)(∅)
⊕
V(1)(3,1)(∅)

V(∅)(3,1,1)(∅)

,

V(3,2)(∅)(∅)
V(2,2)(1)(∅)

⊕
V(3,1)(1)(∅)

V(2,1)(1,1)(∅)
⊕
V(2,1)(2)(∅)

⊕
V(3)(2)(∅)

V(1,1)(2,1)(∅)
⊕
V(2)(2,1)(∅)

⊕
V(2)(3)(∅)

V(1)(2,2)(∅)
⊕
V(1)(3,1)(∅)

V(∅)(3,2)(∅)

,

V(4,1)(∅)(∅)
V(3,1)(1)(∅)

⊕
V(4)(1)(∅)

V(2,1)(2)(∅)
⊕
V(3)(1,1)(∅)

⊕
V(3)(2)(∅)

V(1,1)(3)(∅)
⊕
V(2)(2,1)(∅)

⊕
V(2)(3)(∅)

V(1)(3,1)(∅)
⊕
V(1)(4)(∅)

V(∅)(4,1)(∅)

,

V(5)(∅)(∅)
V(4)(1)(∅)
V(3)(2)(∅)
V(2)(3)(∅)
V(1)(4)(∅)
V(∅)(5)(∅)

, V(1)(∅)(1,1,1,1) , V(1)(∅)(2,1,1) , V(1)(∅)(2,2) ,

V(1)(∅)(3,1) , V(1)(∅)(4) ,
V(1)(∅)(1,1)

⊕
V(1,1)(∅)(1,1,1)

⊕
V(2)(∅)(1,1,1)

V(1)(1)(1,1,1)
,

V(1)(∅)(1,1)
⊕
V(1)(∅)(2)

⊕
V(1,1)(∅)(2,1)

⊕
V(2)(∅)(2,1)

V(1)(1)(2,1)
,
V(1)(∅)(2)

⊕
V(1,1)(∅)(3)

⊕
V(2)(∅)(3)

V(1)(1)(3)
,

V(1)(∅)(∅)
⊕
V(1,1)(∅)(1)

⊕
V(2)(∅)(1)

⊕
V(1,1,1)(∅)(1,1)

⊕
V(2,1)(∅)(1,1)

V(1)(1)(1)
⊕
V(1,1)(1)(1,1)

⊕
V(2)(1)(1,1)

V(1)(1,1)(1,1)

,

V(1,1)(∅)(1)
⊕
V(2)(∅)(1)

⊕
V(1,1,1)(∅)(2)

⊕
V(2,1)(∅)(2)

V(1)(1)(1)
⊕
V(1,1)(1)(2)

⊕
V(2)(1)(2)

V(1)(1,1)(2)

,

V(1,1)(∅)(1)
⊕
V(2)(∅)(1)

⊕
V(2,1)(∅)(1,1)

⊕
V(3)(∅)(1,1)

V(1)(1)(1)
⊕
V(1,1)(1)(1,1)

⊕
V(2)(1)(1,1)

V(1)(2)(1,1)

,

V(1)(∅)(∅)
⊕
V(1,1)(∅)(1)

⊕
V(2)(∅)(1)

⊕
V(2,1)(∅)(2)

⊕
V(3)(∅)(2)

V(1)(1)(1)
⊕
V(1,1)(1)(2)

⊕
V(2)(1)(2)

V(1)(2)(2)

,

V(1,1,1)(∅)(∅)
⊕
V(2,1)(∅)(∅)

⊕
V(1,1,1,1)(∅)(1)

⊕
V(2,1,1)(∅)(1)

V(1,1)(1)(∅)
⊕
V(2)(1)(∅)

⊕
V(1,1,1)(1)(1)

⊕
V(2,1)(1)(1)

V(1)(1,1)(∅)
⊕
V(1,1)(1,1)(1)

⊕
V(2)(1,1)(1)

V(1)(1,1,1)(1)

,
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V(1,1,1)(∅)(∅)
⊕

2V(2,1)(∅)(∅)
⊕
V(3)(∅)(∅)

⊕
V(2,1,1)(∅)(1)

⊕
V(2,2)(∅)(1)

⊕
V(3,1)(∅)(1)

2V(1,1)(1)(∅)
⊕

2V(2)(1)(∅)
⊕
V(1,1,1)(1)(1)

⊕
2V(2,1)(1)(1)

⊕
V(3)(1)(1)

V(1)(1,1)(∅)
⊕
V(1)(2)(∅)

⊕
V(1,1)(1,1)(1)

⊕
V(1,1)(2)(1)

⊕
V(2)(1,1)(1)

⊕
V(2)(2)(1)

V(1)(2,1)(1)

,

V(2,1)(∅)(∅)
⊕
V(3)(∅)(∅)

⊕
V(3,1)(∅)(1)

⊕
V(4)(∅)(1)

V(1,1)(1)(∅)
⊕
V(2)(1)(∅)

⊕
V(2,1)(1)(1)

⊕
V(3)(1)(1)

V(1)(2)(∅)
⊕
V(1,1)(2)(1)

⊕
V(2)(2)(1)

V(1)(3)(1)

,

V(1,1,1,1,1)(∅)(∅)
⊕
V(2,1,1,1)(∅)(∅)

V(1,1,1,1)(1)(∅)
⊕
V(2,1,1)(1)(∅)

V(1,1,1)(1,1)(∅)
⊕
V(2,1)(1,1)(∅)

V(1,1)(1,1,1)(∅)
⊕
V(2)(1,1,1)(∅)

V(1)(1,1,1,1)(∅)

,

V(2,1,1,1)(∅)(∅)
⊕
V(2,2,1)(∅)(∅)

⊕
V(3,1,1)(∅)(∅)

V(1,1,1,1)(1)(∅)
⊕

2V(2,1,1)(1)(∅)
⊕
V(2,2)(1)(∅)

⊕
V(3,1)(1)(∅)

V(1,1,1)(1,1)(∅)
⊕
V(1,1,1)(2)(∅)

⊕
2V(2,1)(1,1)(∅)

⊕
V(2,1)(2)(∅)

⊕
V(3)(1,1)(∅)

V(1,1)(1,1,1)(∅)
⊕
V(1,1)(2,1)(∅)

⊕
V(2)(1,1,1)(∅)

⊕
V(2)(2,1)(∅)

V(1)(2,1,1)(∅)

,

V(2,2,1)(∅)(∅)
⊕
V(3,2)(∅)(∅)

V(2,1,1)(1)(∅)
⊕
V(2,2)(1)(∅)

⊕
V(3,1)(1)(∅)

V(1,1,1)(1,1)(∅)
⊕
V(2,1)(1,1)(∅)

⊕
V(2,1)(2)(∅)

⊕
V(3)(2)(∅)

V(1,1)(2,1)(∅)
⊕
V(2)(2,1)(∅)

V(1)(2,2)(∅)

,

V(3,1,1)(∅)(∅)
⊕
V(3,2)(∅)(∅)

⊕
V(4,1)(∅)(∅)

V(2,1,1)(1)(∅)
⊕
V(2,2)(1)(∅)

⊕
2V(3,1)(1)(∅)

⊕
V(4)(1)(∅)

V(1,1,1)(2)(∅)
⊕

2V(2,1)(2)(∅)
⊕
V(2,1)(1,1)(∅)

⊕
V(3)(1,1)(∅)

⊕
V(3)(2)(∅)

V(1,1)(2,1)(∅)
⊕
V(1,1)(3)(∅)

⊕
V(2)(2,1)(∅)

⊕
V(2)(3)(∅)

V(1)(3,1)(∅)

,

V(4,1)(∅)(∅)
⊕
V(5)(∅)(∅)

V(3,1)(1)(∅)
⊕
V(4)(1)(∅)

V(2,1)(2)(∅)
⊕
V(3)(2)(∅)

V(1,1)(3)(∅)
⊕
V(2)(3)(∅)

V(1)(4)(∅)

,

V(1,1)(∅)(1,1,1) , V(1,1)(∅)(2,1) , V(1,1)(∅)(3) , V(2)(∅)(1,1,1) , V(2)(∅)(2,1) , V(2)(∅)(3) ,

V(1,1)(∅)(1)
⊕
V(1,1,1)(∅)(1,1)

⊕
V(2,1)(∅)(1,1)

V(1,1)(1)(1,1)
,
V(1,1)(∅)(1)

⊕
V(1,1,1)(∅)(2)

⊕
V(2,1)(∅)(2)

V(1,1)(1)(2)
,

V(2)(∅)(1)
⊕
V(2,1)(∅)(1,1)

⊕
V(3)(∅)(1,1)

V(2)(1)(1,1)
,
V(2)(∅)(1)

⊕
V(2,1)(∅)(2)

⊕
V(3)(∅)(2)

V(2)(1)(2)
,

V(1,1,1)(∅)(∅)
⊕
V(2,1)(∅)(∅)

⊕
V(1,1,1,1)(∅)(1)

⊕
V(2,1,1)(∅)(1)

⊕
V(2,2)(∅)(1)

V(1,1)(1)(∅)
⊕
V(1,1,1)(1)(1)

⊕
V(2,1)(1)(1)

V(1,1)(1,1)(1)

,

V(1,1,1)(∅)(∅)
⊕
V(2,1)(∅)(∅)

⊕
V(2,1,1)(∅)(1)

⊕
V(3,1)(∅)(1)

V(1,1)(1)(∅)
⊕
V(1,1,1)(1)(1)

⊕
V(2,1)(1)(1)

V(1,1)(2)(1)

,

V(2,1)(∅)(∅)
⊕
V(3)(∅)(∅)

⊕
V(2,1,1)(∅)(1)

⊕
V(3,1)(∅)(1)

V(2)(1)(∅)
⊕
V(2,1)(1)(1)

⊕
V(3)(1)(1)

V(2)(1,1)(1)

,

V(2,1)(∅)(∅)
⊕
V(3)(∅)(∅)

⊕
V(2,2)(∅)(1)

⊕
V(3,1)(∅)(1)

⊕
V(4)(∅)(1)

V(2)(1)(∅)
⊕
V(2,1)(1)(1)

⊕
V(3)(1)(1)

V(2)(2)(1)

,

V(1,1,1,1,1)(∅)(∅)
⊕
V(2,1,1,1)(∅)(∅)

⊕
V(2,2,1)(∅)(∅)

V(1,1,1,1)(1)(∅)
⊕
V(2,1,1)(1)(∅)

⊕
V(2,2)(1)(∅)

V(1,1,1)(1,1)(∅)
⊕
V(2,1)(1,1)(∅)

V(1,1)(1,1,1)(∅)

,
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V(2,1,1,1)(∅)(∅)
⊕
V(2,2,1)(∅)(∅)

⊕
V(3,1,1)(∅)(∅)

⊕
V(3,2)(∅)(∅)

V(1,1,1,1)(1)(∅)
⊕

2V(2,1,1)(1)(∅)
⊕
V(2,2)(1)(∅)

⊕
V(3,1)(1)(∅)

V(1,1,1)(1,1)(∅)
⊕
V(1,1,1)(2)(∅)

⊕
V(2,1)(1,1)(∅)

⊕
V(2,1)(2)(∅)

V(1,1)(2,1)(∅)

,

V(3,1,1)(∅)(∅)
⊕
V(4,1)(∅)(∅)

V(2,1,1)(1)(∅)
⊕
V(3,1)(1)(∅)

V(1,1,1)(2)(∅)
⊕
V(2,1)(2)(∅)

V(1,1)(3)(∅)

,

V(2,1,1,1)(∅)(∅)
⊕
V(3,1,1)(∅)(∅)

V(2,1,1)(1)(∅)
⊕
V(3,1)(1)(∅)

V(2,1)(1,1)(∅)
⊕
V(3)(1,1)(∅)

V(2)(1,1,1)(∅)

,

V(2,2,1)(∅)(∅)
⊕
V(3,1,1)(∅)(∅)

⊕
V(3,2)(∅)(∅)

⊕
V(4,1)(∅)(∅)

V(2,1,1)(1)(∅)
⊕

2V(3,1)(1)(∅)
⊕
V(2,2)(1)(∅)

⊕
V(4)(1)(∅)

V(2,1)(1,1)(∅)
⊕
V(2,1)(2)(∅)

⊕
V(3)(1,1)(∅)

⊕
V(3)(2)(∅)

V(2)(2,1)(∅)

,

V(3,2)(∅)(∅)
⊕
V(4,1)(∅)(∅)

⊕
V(5)(∅)(∅)

V(2,2)(1)(∅)
⊕
V(3,1)(1)(∅)

⊕
V(4)(1)(∅)

V(2,1)(2)(∅)
⊕
V(3)(2)(∅)

V(2)(3)(∅)

, V(1,1,1)(∅)(1,1) , V(1,1,1)(∅)(2) , V(2,1)(∅)(1,1) , V(2,1)(∅)(2) ,

V(3)(∅)(1,1) , V(3)(∅)(2) ,
V(1,1,1)(∅)(∅)

⊕
V(1,1,1,1)(∅)(1)

⊕
V(2,1,1)(∅)(1)

V(1,1,1)(1)(1)
,

V(2,1)(∅)(∅)
⊕
V(2,1,1)(∅)(1)

⊕
V(2,2)(∅)(1)

⊕
V(3,1)(∅)(1)

V(2,1)(1)(1)
,
V(3)(∅)(∅)

⊕
V(3,1)(∅)(1)

⊕
V(4)(∅)(1)

V(3)(1)(1)
,

V(1,1,1,1,1)(∅)(∅)
⊕
V(2,1,1,1)(∅)(∅)

⊕
V(2,2,1)(∅)(∅)

V(1,1,1,1)(1)(∅)
⊕
V(2,1,1)(1)(∅)

V(1,1,1)(1,1)(∅)

,

V(2,1,1,1)(∅)(∅)
⊕
V(3,1,1)(∅)(∅)

V(1,1,1,1)(1)(∅)
⊕
V(2,1,1)(1)(∅)

V(1,1,1)(2)(∅)

,

V(2,1,1,1)(∅)(∅)
⊕
V(2,2,1)(∅)(∅)

⊕
V(3,1,1)(∅)(∅)

⊕
V(3,2)(∅)(∅)

V(2,1,1)(1)(∅)
⊕
V(2,2)(1)(∅)

⊕
V(3,1)(1)(∅)

V(2,1)(1,1)(∅)

,

V(2,2,1)(∅)(∅)
⊕
V(3,1,1)(∅)(∅)

⊕
V(3,2)(∅)(∅)

⊕
V(4,1)(∅)(∅)

V(2,1,1)(1)(∅)
⊕
V(2,2)(1)(∅)

⊕
V(3,1)(1)(∅)

V(2,1)(2)(∅)

,

V(3,1,1)(∅)(∅)
⊕
V(4,1)(∅)(∅)

V(3,1)(1)(∅)
⊕
V(4)(1)(∅)

V(3)(1,1)(∅)

,

V(3,2)(∅)(∅)
⊕
V(4,1)(∅)(∅)

⊕
V(5)(∅)(∅)

V(3,1)(1)(∅)
⊕
V(4)(1)(∅)

V(3)(2)(∅)

, V(1,1,1,1)(∅)(1) , V(2,1,1)(∅)(1) , V(2,2)(∅)(1) , V(3,1)(∅)(1) ,

V(4)(∅)(1) ,
V(1,1,1,1,1)(∅)(∅)

⊕
V(2,1,1,1)(∅)(∅)

V(1,1,1,1)(1)(∅)
,

V(2,1,1,1)(∅)(∅)
⊕
V(2,2,1)(∅)(∅)

⊕
V(3,1,1)(∅)(∅)

V(2,1,1)(1)(∅)
,
V(2,2,1)(∅)(∅)

⊕
V(3,2)(∅)(∅)

V(2,2)(1)(∅)
,

V(3,1,1)(∅)(∅)
⊕
V(3,2)(∅)(∅)

⊕
V(4,1)(∅)(∅)

V(3,1)(1)(∅)
,
V(4,1)(∅)(∅)

⊕
V(5)(∅)(∅)

V(4)(1)(∅)
, V(1,1,1,1,1)(∅)(∅) , V(2,1,1,1)(∅)(∅) ,

V(2,2,1)(∅)(∅) , V(3,1,1)(∅)(∅) , V(3,2)(∅)(∅) , V(4,1)(∅)(∅) , V(5)(∅)(∅)
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